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1. Introduction 

One of the principal objectives in the future utilization of 

orbital laboratories and stations is the production of materials 

in space. This type of material production is referred to as space 

processing. One of the primary constituents of most production process.es 

involves the solidification of materials. The broad objective of the 

present report is to investigate the solidification process in a low 

gravity environment, while the specific task is to look at the stability 

of the solid-liquid interface under the same conditiuns. The meaning 

of the term stability as used here will be discussed more fully later 

on in the report. 

The problem of material solidification in general has attracted 

researchers for many decades due to both its importance to industry 

from the practical point of view and its mathematical difficulty from 

the theoretical point of view. The analytical solidification problem 

is commonly known as the "Stefan Problem" in honor of Jakob Stefan 

(1889), who first formulated it. At the present time, solutions to 

various aspects of the problem exist under different boundary condi- 

tions, such as to make it of practical use for industrial applications. 

For recent reviews of such solutions the reader is referred to the 

books by Rubinstein (1971) and Ockendon and Hodgkins (1975). Also, 

the not-so-recent review articles by Boley (1969) and Muehlbauer and 

Sunderland (1965) are informative. However, the problem in its entirety 

is far from solved,as is revealed from a scan of the recent literature 

which, incidentally, also shows the continued interest in Lhe problem. 



The mathematical difficulty of the problem is manifested in the 

fact that although the governing equations are linear, the boundary 

conditions are strongly non-linear, with the added difficulty that 

the boundaries are not stationary. Due to this second complication, 

almost all of the solutions to the problem are time dependent with 

only very few exceptions where it is steady. 

Careful inspection of the problem reveals that the formulation 

of the problem is not at all altered when the surrounding environment 

is at reduced gravity. Hence, all of th:e mathematical difficulties 

alluded to earlier are present under the new conditions. However, 

instead of tackling the full-blown problem for the present report 

and thus adding relatively little new information, it was decided 

to look at one aspect of the problem which might be of relevance to 

space processing. This aspect involves the deformation of the solid- 

liquid interface from its original form during a solidification process 

in a reduced gravity environment. 

The problem just defined above is not unique to space process- 

ing, and there exist quite a few applications for ground base work. 

If the solidifying material is composed of a binary alloy, for example, 

it has been shown first by Mullins and Sekerka (1964) and later by 

Wolkind and Segel (1970) that the solid-liquid interface could deviate 

from its original planar configuration for both finite and infinitesimal 

disturbances. On the other hand, if the solidification process is 

allowed to proceed from the upper boundary of the liquid, instabilities 

of the Benard type might contribute to the deformation of the 

phase boundary. Such a problem has been investigated by many workers, 

some of whom are Turcotte (1974), Schubert et al. (1975), and Busse 
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and Schubert (1971), where the application was to mantle convection. 

Also, the same type of instabilities might set in during a melting 

process if the melting is from below, as is shown analytically by 

Sparrow et al. (1977) and later verified experimentally also by Sparrow 

et al. (1978). 

In the present report the stability of the solid-liquid interface 

of a pure metal will be studied during a solidification process in 

which the liquid surface is free. Two such problems will be considered, 

one in which the phase boundary is ftationary and another in which it 

is propagating at a constant speed. Note that the added complication 

due to the solidification of a mixture or a binary alloy is avoided 

here since it will not greatly enhance the basic understanding of the 

problem. Since the problem will be analyzed in a zero gravity environ- 

ment, buoyancy effects do not contribute to the problem, thus leaving 

only the influence of a variable surface tension to be investigated. 

Seki et al. (1977) have studied the influence of surface tension 

coupled with buoyancy effects on the stability of the phase boundary. 

Their work, however, relates to a stationary phase boundary. Chang 

and Wilcox (1976), on the other hand, considered the effects of surface 

tension in a floating zone melting process. However, their analysis 

was not of the stability type but rather numerical in which the 

solidification process does not enter. 

In the next few sections of this report the problem to be studied 

will be defined and the equations will be set up with the appropriate 

boundary conditions. Then the problem will be solved and the results 

tabulated and discussed. In the, final section these results will be 

discussed as they apply to real worki,ng materials such as some pure 

metals whose use is anticipated in space processing applications. 
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2. Mathematical Formulation 

The complete analysis of the shape of the solid-liquid interface 

in a general solidification process is extremely complicated, which 

ultimately might require a complicated numerical solution and thus 

is beyond the scope of the present report. Alternatively; it is 

possible to study the stability of the interface for a simple geo- 

metrical configuration. By stability'of the interface the question 

is asked: given an original shape of the interface, say, planar, or 

any other configuration, under what conditions will the shape remain 

unaltered during the various stages of the solidification process? 

This is a typical example of a classical hydrodynamic stability problem 

in which it is determined whether the interface geometry will change 

if a slight disturbance is imposed on the original configuration. 

The evolution of this disturbance with time wi17 then determine the 

fate of the original configuration. If the disturbance decays with 

time, then the original configuration is said to be stable with respect 

to the disturbance, and it is unstable otherwise. If the disturbance 

is infinitesimal, then the stability analysis is called linear, and if 

it is finite then the analysis is nonlinear. In the present report, 

only linear stability analysis will be performed. 

Since most stability analyses are performed with respect to time, 

it is imperative that an original state is found which is either 

independent of, orat most periodic with, time. As discussed in the 

introduction, in a solidification process the solution is almost 

always a nonperiodic function of time. For the present study two 

solutions for the mean state were found which are independent of time, 



both of which are analyzed here. The first configuration which is shown 

in Figure 1 constitutes a fluid and a solid layer which are in equilib- 

rium and hence the liquid-solid interface is planar and stationary. 

Although such a configuration is not strictly a solidification process 

it is nevertheless used for illustrative purposes and further to 

unravel the main difficulties associated with the problem. The second 

configuration constitutes a continuous solidification process in which 

the interface boundary is moving at a constant rate. Vi th a simple 

transformation it will be shown that a steady state solution exists 

for this process, thus facilitating a managable linear stability 

analysis. This second example is closer to a real solidification 

process and thus is a more realistic example than the first. 

Since the present stability analyses are linear, a direct answer 

to the stability of the interface cannot be obtained. The stability 

or the instability of the interface will be considered as a conse- 

quence of the stability or instability of the fluid. Thus, if the 

analysis reveals the liquid to be unstable to infinitesimal distur- 

bances, it is then assumed that convection of some sort will set in 

the liquid in such a way as to disturb the original shape of the 

interface and probably deform it, as shown schematically in Figure 2. 

If the fluid is found to be stable, on the other hand, it will be 

assumed that any initial deformation of the interface will be evened 

out and the interface will retain its original configuration. 

2 .l Steady State Solidification Process 

A. The Mean State Solution 

It can be formally proven, and will be shown below, that if the 

upper surface of a melt layer which is on top of a solid layer whose 



surfaces are kept at a constant but different temperature .each, then 

part of the melt will solidify until the solid-liquid interface reaches 

an equilibrium position. This equilibrium position of the solid- 

liquid interface is a function of both temperatures and the solidifica- 

tion temperature only. This is one of the basic and simple steady 

state solutions to the Stefan problem [Rubinstein (1971)]. As a first 

example, the stability of this solution will be studied where a sketch 

of the problem is provided in Figure 1. 

Consider two finite depth layers, one of melt and another of 

solid, which are infinite in the horizontal direction, where the 

temperature distribution in both the liquid and solid is denoted by 

TX and Ts, respectively. Since there is no convection in the mean 

state, the energy equations for a steady state are given by 

with the temperature at the top of the liquid layer given by 

Tia(d)=Ti and the temperature at the bottom of the solid is given by 

T;$O)=T;. In here the asterisk denotes dimensional quantities. 

However, since we are considering a solidification process, the energy 

balance and conservation of mass considerations at the solid-liquid 

interface imposes the following three additional cond itions . . 

I 
ip = s 
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where ks and kit are the thermal condictivities of the solid and liquid, 

respectively. Trf; is the solidification temperature and S is the 

equilibrium position of the interface. 

A solution to equation (1) with all the boundary conditions is 

given by 

where 

(3) 

The equilibrium position of the interface is uniquely determined by 

this solution to be 

where 
. 

The so lution gi ven by (3) is identical to that obtained by Rubinstein 

(1971) for the time dependent problem in the limit as time+,. Further- 

more, the above solution is no more than the steady conduction solution 

for the fluid and solid layers with a linear temperature distribution 

in each. 

(4) 
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B. Linear Stability Analysis 

In order to investigate whether the interface boundary can withstand 

as light perturbation, a linear stability analysis was performed on 

the mean state solutions (3) and the boundary conditions. The analysis 

was carried out along lines which are similar to what is commonly done 

in hydrodynamic stability analyses. The field variables are first 

decomposed into a mean and a perturbation in the form 

75.z +7-‘, 
; = iTo +Z’ > (5) 

where T is the temperature field and: is the velocity vector. Z. in 

the present case is zero since it is assumed that there is no convective 

motion in the mean state. These f 'unctions are then substituted into 

the momentum and energy equations and the mean state is subtracted 

out. Since we are considering on1 y a linear stability analysis, the 

remaining equations for the perturbation functions are then linearized. 

Furthermore, these equations are then manipulated to eliminate the 

pressure term resulting in the following equations: 

(6) 

(7) 

(8) 



I’ 

Use has been made in the above equations of the mass conservation 

equation. In these equations v is the kinematic viscosity of the 

liquid, K$ and K~ are the thermal diffusivities of the liquid and 

solid, respectively, and W’ is the z component of the velocity vector, 

'and d T OR is the temperature gradient of the mean state in the liquid 
dz 

which is a constant in this case. The independent variables in equa- 

'tions (6)-(8) have been made dimensionless in the following way.: 

.( x, 's , t ) = ( d'cl , y' Id a t*/d ) > 

t = t*4/d= 1 

LJ.’ = w”d/Ht 
0 

7 = (9) 

and 

where again the asterisk indicates dimensional quantities. 

The set (6)-(8) constitutes a linear partial differential system 

for the perturbation variables w', T; and Tk. A solution to this set 

is sought for appropriate boundary conditions which are obtained in the 

following way. At the lower surface of the solid it is assumed that 

the temperature perturbation is zero, i.e., 

7y10) = 0 

At the top of the surface of the liquid we require the velocity 

perturbation to be also zero, i.e., 

(10) 

tJ *‘(d+s) = 0 
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Also, a radiation condition is imposed on the upper surface of the 

liquid in the form 

where q represents the rate of change with temperature of the rate of 

loss of heat per unit area from the upper surface to its upper environ- 

ment. Note if q-ta we approach a conducting boundary condition, while 

if q-+0 we approach an insulating boundary condition. A comprehensive 

discussion of this boundary condition is provided by Pearson (1958). 

Another condition to be imposed on the upper surface of the liquid 

layer is that of the balance of the tangential forces on that surface, 

which is given by Levich and Krylov (1969): 

where CT and p are the surface tension and dynamic viscosity of the fluid. 

Now, since the surface tension is known to be a strong function 

of temperature, the above condition will be valid only if the tempera- 

ture of the upper surface is not constant. If instabilities will set 

in the fluid, the temperature distribution will not be constant on the 

surface and the surface tension force will play a major role in the 

stability analysis. For the purpose of the present report it will be 

assumed that the surface tension is a linear function of temperature 

in the form 

G = Go + id, 
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au where b = x and a0 is a constant. With this approximation the 
OR 

condition for the balance of the tangential forces may be rewritten as: 

“(g2 +a* aya ) 7”: b (& +$,2 -$)fl* * 
@ t = S+d. (13) 

There remains the boundary conditions at the interface to be 

satisfied. The first is the requirement that the temperature at the 

interface regardless of the position of the interface remains the 

solidification temperature leading to 

Here it is assumed that the perturbed position of the interface to a 

first order of approximation is the same as its unperturbed position. 

Also, at this position, where the solid boundary acts as a wall, the 

no-slip conditions are imposed and take the form 

a/‘, 0 
32’ 

@Z-S, 

while the linearized form of the energy balance at the interface leads 

to 

(14) 

(15) 

where p, is the density of the solid and L is the latent heat of fusion 

Condition (16) is not intuitively obvious and is rigorously derived 

in Appendix 1 for the present case and for the subsequent case also. 

The linear system of equations (6)-(7) together with the separable 

linear boundary conditions (lo)-(16) admit solutions through the 
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separation of variables method. To obtain such a soluti on the perturba- 

tion variables must take the following functional form: 

[ 
I 

(17) 

Note that only a two-dimensional form of the perturbation function is 

considered, where it is hoped that the analysis is not affected in a 

major way. 

Substituting (17) into (6)-(7) leads to the following system of 

ordinary differential equations for the perturbation functions 

The question of stability or instability can be settled by deter- 

mining the value of ao. Specifically, only the sign of Re(a,) is needed 

since if Re(ao) is negative, zero or positive then the system is stable, 

neutral or unstable, respectively. To even determine the sign of Re(ao) 

is quite tedious and instead the principle of exchange of stability is 

invoked here. This principle implies that if Re(ao)=O then Im(ao)=O 

and if this is true, then it is possible to set ao=O in order to deter- 

mine the neutral stability criteria. Adopting this principle reduces 

the system of equations to the following: 

(18) 
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(b’-a’)tPs = 0 

while the boundary conditions will take the following form: 

where 

In the above boundary conditions the origin has been shifted to the 

interface boundary. 

The solutions to equations (20) and (21) may be written immedi- 

ately in the form 

13 

(20) 

(21) 

(22) 

C-23) 



(24) 

Satisfying the boundary conditions for the perturbation temperature 

in the solid leads to 

and thus 

&: s 0 . 
(25) 

However, A, through AS may be determined from the conditions on the 

perturbation temperature in the liquid. Since we are looking for 

neutral stability curves the exact values of Ai need not be determined 

but if all the conditions are to be satisfied and since the conditions 

are homogenous, the requirement that the coefficients be unique will 

lead to the following parameter relation: 

where D,, D2 and DS are the following determinants: 
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This equation gives the required relationship between the Marangoni 

number and the wave number of the neutrally stable disturbances. 

2.2 Constant Rate Solidification Process 

A. The Mean State Solutions 

The analysis performed in the previous section was for a stationary 

interface in which the solidi.fication process entered only in the per- 

turbation equations and not in the mean solution. Thus, the example 

does not realistically model a solidification process and was used 

only for the simplicity of the mathematics involved and for illustra- 

tive purposes. In this section the analysis of a more realistic 

15 



problem is presented. The problem will involve a continuous solidifica- 

tion process in which the melt is being fed continuously and at a 

constant rate while the solidification rate is proceeding also at a 

constant rate. A sketch of the problem is shown in Figure 3. However, 

in order to keep the solidification rate constant for a continuous 

process, it is required that the heat removal rate at the bottom of 

the solid be also constant. The physical analog of this model could 

be a continuous solidification process in which the melt is being 

replenished all the time in an exact amount to keep its mass constant 

for a very slow solidification process. 

Thus, consider a finite depth melt which is infin-ite in the hori- 

zontal extent on top of a solid layer. The temperature distributions 

in both the solid and the liquid are given by the one-dimensional energy 

equations [Carslaw and Jaeger (1959)] in the form 

where p, and pR are the densities of the solid and liquid, respectively, 

and the rest of the notation is the same as that used in the previous 

section. Note that here the interface position S(t) is a function 

of time and not a constant as before. However, it will be assumed from 

the start that the interface moves at a constant speed v 
P' 

where 

(30) 

(31) 
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At this point, as will prove beneficial later, the origin of the 

coordinates is moved to the solid-liquid interface via the following 

G.allelain transformation: 

This transformation will render equations (30) and (31) to the 

following form: 

Also in these equations the primes have been dropped for ease of notation. 

The boundary conditions appropriate to this problem- are the following: 

(33) 

(34) 

(35) 

1.36) 

(37) 

(38) 



Note that for the solid boundary condition a heat transfer rate condition 

is used rather than a fixed temperature condition in order to be 

consistent with the assumption of a constant solidification rate. 

The temperature distribution in the liquid phase may be obtained 

from the solution of the above system to be: 

t-391 

where T oR and z are d imensionless quantities having the followi,ng form: 

A plot of this distribution of temperature is given in Figure 4. The 

system of equations and the boundary conditions also specify uniquely 

the temperature distribution in the solid and the propagation speed 

of the interface. However, use will be made of the latter condition 

which is also a matching condition and will be written out when the 

need arises. 

B. Linear Stability Analysis 

As indicated earlier, the stability of the solid-liquid interface 

is inferred from the stability of the liquid phase. The stability 

analysis here is performed in a very similar manner as was done in 

the previous section. Again, the temperature and velocity fields are 

separated into a mean and a perturbation and substituted into the 

momentum and energy equations resulting in a linearized form for the 

equations for the perturbation functions. In this case, however, 
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a Gallehian transformation is ,again adopted as was done for the mean 

temperature distribution where 
w ' 

t =t* 
WI 

x r sin 

Also, the resulting independent variables in the new frame of reference 

are non-dimensionalized in the following way: 

L “,q,t 1 = L x;J > Y*/d d’ld 1 
z = ?/L$ 

where d is the depth of the liquid layer. 

The resulting linear non-dimensional governing equations for the 

perturbation functions are 

Most boundary condit ions under which the above equations are to be 

solved in the moving frame of reference are identical to conditions (.lO)- 

(16) except for cond ition (16) which now is given by 

(40) 

(41) 

(42) 
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Again, due to the form.of the boundary conditions, equations (40)- 

(42) may be solved through the normal mode method. It will be assumed 

for simplicity that the perturbation functions are two-dimensional. 

Under these circumstances the perturbation functions will take the 

same form as (17). Substituting this functional form of the solution 

into equations (40)-(42) we get after setting a, = 0: 

where 

R= @/d 

(43) 

(44) 

(45) 

In equations (43)-(45) we have again invoked the principle of excha.nge 

of stability. 

The solution method for the system of equations (43)-(45) is 

slightly different here from that of the previous case. First, 
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equation (43) is solved alone for the velocity perturbation v(z). 

Then equation (44) is solved for the temperature perturbation O&Z) 

as an inhomogenous equation. Equation (45), however, is uncoupled 

and may be solved 

easily written in 

separately. The solution for equation (43) may be 

the form 
r( 

where Xi are given by 

‘x -+a r,t - 
(47) 

‘x ‘i,q = - +p+f (q$+dp 

while the solution to equation (44) is given by 

4 c 

$W = L' 
is1 

A; C; Q+S, +-x;h\ -t 
c 

i 
fl,*pIa;t) 

i= C (481, 

where Al through A4 and Xl through X4 are the same constants as those 

in the velocity distribution, while X5 and X6 are given by 

(46) 

1 C,b =- 

The Ci appearing in (48) are given by 

(49) 
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where 

x, = Wp 

Since the solution for the perturbation velocity and temperature are 

obtained separately it is instructive to give the boundary conditions 

Thus substituting the solutions given by (46) and (48) into the boundary 

conditions (52) yields a system of equations for A. If the value of 

the coefficients Ai is to be unique then the determinant of the coeffi- 

cient matrix for Ai must be zero, i.e., 

(51) 

(52) 

.det Lq = o 

where the matrix E is given .by 

22 
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To obtain the neutral stability curves equation (54) is then solved for 

one of the parameters in terms of the rest, i.e., 

t.56 > 
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3. Non-Dimensional Parameters 

The goal of the present work is to calculate the neutral 

stability curves and the critical Marangoni number, M, as a 

function of the non-dimensional wave number .of the disturbance. 

It was necessary to non-dimensionalize the problems to be able 

to make these calculations. There are always many ways to 

non-dimensionalize a problem, but the method used recover 

familiar dimensionless parameters plus additional parameters. 

3.1. Steady State Process 

The dimensionless independent variables were defined along 

with the solution to the problem given earlier. The dependent 

variables were non-dimensionalized to give the following relation- 

ship for the neutral stability curve: 

M= M(a,B,A,y,A, 0 

where , 
da dTb'il 

M=dT"p-d 
2 

a =dk=F= dimensionless wave number (A = disturbance 
wave length, k = disturbance wave number) 

B=S! 
kll 

= Biot modulus 

A= L 
Cps(T;-T;) 

dTOR 

'= dz 
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K = kR/ks 

It was desirable to calculate the neutral stability curves 

using values of these parameters which characterize material 

systems of interest for space processing. Table I lists property 

values for some metallic materials that would be of interest. 

The parameters A and K depend only upon the material properties 

and their values are tabulated in Table II. A varies from 0.7 

to 3.0 for the metals considered, while K varies from 0.44 

to 1.74 but.is generally around 0.5. 

The remaining dimensionless parameters depend upon the 

boundary conditions of the problem as well as the material 

properties. First consider the mean temperature field. The 

analysis assumed that the material pr'operties were constant 

but in fact they are strong functions of temperature. There- 

fore, for this reason and because solidification usually 

proceeds slowly, the temperature difference across the liquid- 

solid system can be assumed to be small, say, 2°C. Then A 

varies from 35 to 200 and y from 1.2 to 1.5, 
Jc 

The Biot modules, 

B, on the other hand, which characterizes the heat transfer 

through the upper liquid surface, can be left as a parameter 

in the problem. 

%maller values of A correspond to large values of (TS-TI) and 
cannot be expected to yeild satisfactory results using the 
present analysis. 
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3.2. Constant Rate Process 

For the continuous rate process the neutral stability 

curve is given by the following relation: 

M = M(a,R,Pr,Q,B,A,K,P,C) 

. where 
vPd = Reynolds number 

R=- 
% 

% Pr = - = Prandtl number 
5L 

P= 
pdpS 

c = cp /c 

0 ,., pS 

Q = qos d, 

kg U2-T,> 

A= L J 
Cp (T;-T;) 

S 

and K and B are defined as before. Notice that A is now 
;k 

defined in terms of T2 -T" and is thus different from the parameter m 

defined for the steady state problem. M is defined as 

If a mean temperature gradient in the liquid defined by 

* Jc dcs 
M= 

(T2-Tm) do” 

VP 

1 1 
dT* = 

(T~-T;) 
7 
dz d 
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is used in the definition of the Marangoni number, then M 

is related to it as follows: 

M= R Pr M 

However, M is the more natural parameter for the analysis and 

the neutral stability curves will be given in terms of it. 

Since Pr is small M is considerably smaller than M, for 

Reynolds numbers of the order of one. 

The continuous rate problem was non-dimensionalized using 

the-speed of the phase plane, v 
P' 

as one of the parameters in 

(M and R). The phase plane speed is not one of the boundary 

conditions of the problem but rather is part of the solution. 

It is determined from the non-linear matching condition that 

results from matching the solutions at the liquid-solid 

interface for the mean motion. That matching condition is the 

following: 

0 OS 

This relation can be non-dimensionalized using the parameters 

listed above and they were selected, in part, to accomplish that 

non-dimensionalization. In non-dimensional form the equation 

becomes 

QPC 
AR fr 

From Table II it can be seen that Pr = p(10W2), A=O(l), and 

P = O(1). Therefore, the exponentials are small if R = O(1). 

R = vpd/vQ. From Table I, vR = O(10m2) and for a typical 
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I“ 
system d = 0(1 cm) and vp will be of the order of 10-2cm/sec if 

R is of the order of one. 

Therefore, for R = O(1) the above expression can be 

linearized, yielding the following expression for the Reynolds 

number in terms of material properties and the boundary condi- 

tions of the problem. 

Values of the parameters for some metallic materials are given 

in Table II. The above expression is used to calculate R in 

terms of the other given parameters. Pr, P and C depend only 

upon the properties of the materials., Q, which is the non- 

dimensional heating rate, fixes the rate of solidification and 

can be independently varied. B, which determines the perturbation 

heat transfer rate, can also be kept as a parameter in the 

solution. 
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4. Discussion 

It is a common practice in stability analyses to present 

the results in the form of neutral stability curves such as 

shown in Figure 51 Such curves delineate in the relevant 

parameter space regions of stability and instability. It 

should be emphasized that the information obtained from such 

curves is the most that one can hope to get from linear stability 

analyses. However, it should be remembered that in obtaining 

such information the principle of exchange of stability has 

been used without any proof on its validity for the present 

problem, although it is felt that it may hold here. For more 

information on the ensuing process, whether in the form of a 

stationary time periodic bifurcated solution or a totally 

unstable solution, resort must be made to nonlinear analysis. 

Thus, the information obtained here is just qualitative in 

nature without any detail on the ensuing flow, if it occurs. 

4.1 Steady State Process 

The neutral stability curves for the steady state solidi- 

fication process given by equation (26) are shown in Figure 5. 

All of these curves show a critical Marangoni number indicating 

a range of Marangoni numbers, M, for which the perturbations 

are stable regardless of the wave number. The various curves 

are of different values of the Biot modulus, B, which is a non- 

dimensional form of the rate of heat transfer through the upper 

liquid surface. The similarity between this figure and Figure 1 

of Pearson (1958) is striking. However, this similarity is 
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expected since the problem solved here is almost identical 

with that of Pearson. The only difference between the two is 

in the form of the energy balance condition (16), whereby 

Pearson\s condition is recovered when the latent heat parameter 

A + 03. In fact, this is exactly what happens, for a-s A becomes 

large, Pearson's stability curves for the ideally conducting 

case are recovered. However, this result is achieved quite 

fast and- there exists differences only for unrealistically 

small values of A, i.e., A values of order 1. For any realistic 

solidification process in which the temperature gradient in the 

liquid phase is not too high, the value of A is of order 10 to 

100. The conclusion to be drawn here is that the system becomes 

more unstable (shifting of the neutral stability curves to the 

left) with a decrease in the latent heat values. 

4.2 Constant Rate Process 

The neutral stability curve is given as the function 

M = M(a) 

with Pr, (7, B, A, K, P, and C as parameters. Pr, K, P, and C 

depend only upon the properties of the materials and neutral 

stability curves were computed for typical values of these 

quantities (see Table 11). The dependence of the neutral sta- 

bility curve on each of these parameters was examined and will 

be described below. Although the problem examined is greatly 

simplified compared to a realistic time-dependent solidification 

process, it is hoped that the dependence of the stability upon 

these parameters will be correctly predicted. All results are 

tabulated in Appendix III. 
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Increasing Q by increasing qos, which increases the rate 

of solidification, leads to lower critical values of M. Typical 

neutral stability curves are shown in Figure 7. The values of Q 

used correspond to very small values of qos, of the order of 0.1 

to 0.5 joules/set cm2. It is of interest to note that the wave 

number corresponding to M,rit is approximately constant (except 

as noted later) and equal to 2.0 to 2.2. This corresponds to 

a most critical wave length of about rd. This can be expected 

to be the dimension of the cellular pattern that would occur 

when Merit is exceeded (Pearson (1958)). 

Increasing the rate of heat transfer through the upper 

liquid surface, i.e., increasing B, stabilizes the flow (Figure 

8) . This conclusion is identical to that found in the steady 

state problem and by Pearson (1958) for a non-solidifying liquid. 

Furthermore, this latter result has been borne out by experiment. 

Notice now, however, that the wave number for the most critical 

disturbance increases with heating rate (Figure 9) and the con- 

vection cell size can be expected to decrease accordingly. B 

can be varied by changing either the depth of the liquid or the 

heat transfer coefficient, q, and its variation has no effect 

on the solidification rate R. 

A can be changed in two ways and they have different in- 

fluences upon the staiblity of the system. Different materials 

will have different values of L/Cps (Table II) and this will re- 

sult in different values of A, for a given (TS-Tm). Keeping all 

other boundary conditions constant still results in a change in 

R. The effect of the change in L/C 
P upon Merit is shown in 
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Tabel IV and Figure 10. Materials with higher values of L/C 
ps 

are more stable, even though the rate of solidification is also 

in general faster. 

A can also be varied by changing (T3-T$ but that also 

changes Q. The effect of changing (Ts-Tg) in A and Q simul- 

taneously, while keeping the other boundary conditions constant, 

is shown in Table IV and Figure 11. Again, increasing A, through 

decreasing (T$-Tz), stabilizes the flow. 

As noted above, the parameters Pr, K, P, and C are con- 

stant for a given material. However, the sensitivity of the 

stability upon these parameters was examined so that comparison 

could be made of the relative stability of different materials. 

The Prandtl number can vary over many orders of magnitude, 

depending upon the material (Table II). Because the Reynolds 

number is directly proportional to Pr, calculations were per- 

formed at constant R = 1.0 by varying A simultaneously with Pr. 

The variation of the critical value of M with Pr for this case 

is shown in Figures 12 and 13. Because the Maragoni number is 

related to M by 

M=RPr M 

the variation in critical Marangoni number is very small. The 

results are summarized in Table F. These results are not 

accurate at the larger Pr because very large (T;-Tg) would be 

required to make A small enough to keep R = 1.0. 

The effect of density and specific heat ratio, P and C, 

upon the critical value of M is shown in Figures 14 and 15. The 

greater the increase in the density of the material upon 
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SolTdification, i.e., the lower the value of P, the more stable 

the flow. Materials such as bismuth and water with values of P 

greater than one are somewhat less stable than materials with 

P less than one. Note that R increases somewhat as P is in- 

creased verifying the previous conclusion. The same conclusion 

can be drawn for increasing specific heat ratio, C (Figure 15). 

C also influences R but its effect is greater than the effect of 

changing R alone by changing Q. 

K, the ratio of the coefficients of thermal conductivity, 

can be shown to have no effect upon the stability of the system. 
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5.0 Conclusions 

The following 

of these problems: 

conclusions can be drawn from the solution 

1. Increasing the heat transfer rate from the upper sur- 

face of the liquid by increasing the Biot.modulus, 8, stabilizes 

the flow. The wave number corresponding to the most unstable 

disturbance increases with B causing's corresponding decrease 

in convection cell size. 

2. Increasing the rate of solidification by increasing 

the heat transfer rate through the solid (i.e., increasing Q 

by increasing q,, ) destabilizes the flow. As Q increases the 

Reynolds number, R, is increased. 

3. The wave number of the most unstable disturbance is 

about 2.0 to 2.2 for B = 1.0 and.varies appreciably only with 

changes in B. 

4. For a given temperature difference across the liquid, 

"'i-T;> , materials with larger values of L/Cps are more stable 

than those with smaller values. 

5. Decreasing (T2 m *-T7k) while keeping other boundary con- 

ditions constant stabilizes the flow. 

6. The Prandtl number, Pr, has little effect upon the 

critical Marangoni number for constant R. 

7. Materials with larger values of density and specific 

heat ratios, P and C, are less stable than those with lower 

ratios. 

8. The thermal conductivity ratio, K, has no effect on 

the stability of the flow. 
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Figure 1. Problem Sketch for the Steady State 
Solidification Process 
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Figure 2. Sketch of the Deformation of the Liquid- 
Solid Interface Due to Convection in 
the Fluid 
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in the Liquid for the Constant Rate 
Solidification Process 
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Figure 5. Effect of Biot modulus on the stability of the steady state 

process. A = 20, y = 1.2, K = 0.7, A = 1.5. 
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Figure 6. Variation of most unstable wave number with upper 
surface heat transfer rate for the steady state 
pracess. A = 20, y = 1.2, A = 1.5, K = 0.7. 
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Figure 7, Ekfect of increasing the rate of solidification on th: ;t;ktlity 
of the constant rate process. P, = 0.02, K = 0.5, P . , 
C = 1.04, A = 350, B = 1.0. 
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Figure 8. Effect of increasing the upper heat transfer rate on the 

stability of the constant rate process. P, = 0.01, K = 0.5, 

P = 0.975, c = 1.01, A = 175, Q = 1.01 
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Figure 9. Variation of most unstable wave number 

with upper surface heat transfer rate 
for the constant rate process. Pr = 0.01, 
A = 175, Q = 1.0, K = 0.7, P = 1.0, 
C = 1.0, R = 1.14. 
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Figure 10. Effect of change in A (with constant (T2* - 
Tm*) upon Merit for the constant rate 
process. Pr = 0.01, Q = 2.0, K = 0.7, 
P = 1.0, C = 1.0, B = 1.0. 
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Figure 11. Effect of change in (T2* - Tm*) (with 
qos constant) upon Merit for the 
constant rate problem. Pr = 0.01, 
K = 0.7, P = 1.0, C = 1.0, B = 1.0. 
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Figure 12. Comparison of the stability of materials of different Prandtl 
numbers for the constant rate process. K = 0.7, P = 1.0, 
C = 1.0, Q = 1.0, R = 1.0. 
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Figure 13. Variation of Merit with Pr for R = 1.0 
for the constant rate process. 

i 
= 1.0, K = 0.7, P = 1.0, C = 1.0, 
= 1.0. M = R Pr M. 
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Figure 14. Effect of density change upon Merit for the constant rate 
process. P, = 0.01, A = 175, Q = 1.0, K = 0.7, B = 1.0, 
R = 1.1. 



80 . 

70 . 

IO . 1.1 I2 . 
c 

Figure 15. Effect of specific heat ratio on Merit for 
the constant rate process. 
pr = 0.02, A = 175, Q = 1.0, K = 0.5, 
P = 1.0, B = 1.0. 
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TABLE I. PROPERTIES OF MATERIALS 

a) Properties of Liquid State 

Water 0.9998 4.218 1.79x1o-2 
I 

1.79x1o-2 5.66~10-~ 1.32~10-~ 0.0 
I 

0.0 C 



b) Properties of Solid State 

Bismuth 9.76 0.125 0.084 0.069 25 50.2 C 

Lead 11.34 0.142 0.346 0.215 25 24.6 C 

Tin 7.16 0.226 0.640 0.396 25 21.1 C 

Zinc 7.40 0.389 1.150 0.400 25 102.1 C 

Water 0.917 , 2.100 , 2.21x1o-2 , 1.24~10-~ , 0.0 333.5 I' c 

: 
References: a) 

b) 

c> 

Foust, 0. J., editor, Sodium-N,K Eng'ine'ering Handbook, Voliime '1, Sodi'um Chenii'st'ry 
and Physical Properties, Gordon and Breach (1972). 
Ukanawa, Anthony O., "Diffusion in Liquid Metal Systems," NASA Contractor Report, 
Contract NAS8-30252, June 1975. 
Handbook of Chemistry and Physics, 54th edition, CRC Press (1973). 



Tdble II 

VALUES OF NON-DIMENSIONAL PARAMETERS 

---=..~i__ 
I=. i. Material 

L Sodium 
---~_ 

- I--._- --.. ..-L. __ 

13.6(O) 159/AT 0.255 9.41 1.090 2.008 

Notes: 1. Temperatures measured in "C. 

2. Properties determined at Tm*for sodium and potassium and at 
25°C for the solid phase for other materials. 
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Table III 

A 

2 

20 

200 

EFFECT-OF A ON CRITICAL MAWNGONI NUMBERS 
FOR STEADY STATE PROCESS 

B=Z.O, y=1.2, A=1.5, K=0.7 

Merit a(Mcrit.) 

142.6 2.3 

150.0 2.4 

150.6 2.4 
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TABLE IV 

Effect of A on Critical Marangoni Number 
for the Constant Rate Process 

A. Effect of Change of L/CpS. 

Pr=O.Ol; K=0.7; Q=Z.O; P=l.O; C=l.O; B=l.O 

A 

20 

35 

70 

105 

175 

R 

14.0 

8.2 

4.2 

2.8 

1.7 

aO-fcritt> 

2.1 

2.1 

2.1 

2.1 

2.2 

B. Effect of Change of (9-T;). 

Pr=O.Ol; K=0.7; P=l.O; C=l.O; B=l.O 

A 

17.5 

35 

70 

105 

175 

9 

0.5 

1.0 

2.0 

3.0 

5.0 

R Merit aWcrit) - 
8.4 6.22~10~ 2.1 

5.6 1.08~10~ 2.1 

4.2 1.61~10~ 2.1 

3.7 1.90x103 2.1 

3.1 2.18~10~ 2.1 
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TABLE V 

Effect of Pr on Stability for R=l.O 
Q=l.O; B=l.O; K=l.O; P=l .O; C=l.O 

Pr 

0.002 

0.01 

0.1 

0.3 

0.6 

0.9 

A 

1000 

200 

20 

6.0 

2.7 

1.5 

&r-it 

4.96~10~ 

9.96x103 

1.05x103 

3.59x102 

2.00x102 

1.45x102 

Sicrit 

99.2 

99.6 

101.8 

107.7 

120.0 

130.5 

a(Mcrit) 

2.2 

2.2 

2.2 

2.2 

2.1 

1.9 
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I 
APPENDIX I 

Matching Conditions 

It is necessary to determine the conditions at the liquid-solid 

interface for arbitrary movement of that interface. Once the general 

relations have been derived the conditions will be linearized by 

assuming that the interface motion consists of a mean motion that 

is one-dimensional plus a small perturbation to the mean motion. 

The interface matchi,ng conditions will be written for a fixed labora- 

tory frame of reference. 

General interface conditions, which are expressions of the con- 

servation of mass, momentum, and energy, are stated for a multi- 

component system by lrlilliams (1965). These expressions can be special- 

ized for a control volume consikting of a thin slab that surrounds 

the interface. Assuming one-dimensional mean motion the slab control 

volume in a fixed coordinate system is shown in the figure below. 

A 

iir 
1( 

': t 
Liquid 

I I 
1 .5 s(t) - Interface 

J Solid 

"is 
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Assume that there are no sources of mass at the surface, that the 

viscous stresses can be ignored, and that no chemical reactions occur. 

Write the velocities as follows: 
a A 
U = 0; u 

-z - 

S R 
= w,$ dt = vpk 

A 
dS is the velocity of the control volume and t is a unit vector where dt 

in the z direction. 

The continuity equation, for this control volume [Williams, p. 141, 

or 

P&Vp-WJ = P, VP 

The energy equation is 

where 

e = specific internal energy 

The momentum equation becomes 

Q(&)WR-vp) - p, = 0 

Using this result and the continuity equation, the energy equation 

can be written as 

k dTs - kR dTR 
'dz - 

= P,(epJ & -Pi '~2 
2 

2 ( 
v -w ) 

dt - P R 
dz 

But L=ell-es and the last term can be dropped because it is several 

orders of magnitude smaller than the other terms. Thus, we get the 
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following equation that was used in the solution of the mean state for 

both problems. 

k dTs -kg dTR = psLv 
s a-z- az 

P 

For the perturbation problems it was convenient to transform to a 

coordinate system fixed to the phase surface, S. If Z denotes the 

coordinate system fixed on S, then the velocity transformation is 

WR R =w’ +v 
P 

The continuity equation and matching equations then become 

kS 

PRW;! 
dTS 

dz' 
- kR dTR 

dz' 

PSWi 

-Ppi L. 

This is eq. (16) that was used in the perturbation analysis. 

59 



Appendix II 

RESULTS FOR STEADY STATE PROBLEM 

A B Y A K M cr.it a(M crit) 

1000 0.0 0.2 1.5 0 ..7 79.603 

0.5 2.0 0.2 1.5 0.7 145.7 

5.0 150.2 

25.0 150.6 

20.0 0.0 1.2 1.5 0.7 79.0 2.0 
r 

I 2*o I I 150.0 I 2.4 1 
I 4-o I I 216.9 I 2.5 I 

I 6-O I I 282.5 I 2.6 I 

2.0 2.0 1.2 1.5 0.7 142.6 2.3 

200.0 2.0 1.2 1.5 0.7 150.6 2.4 
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Appendix III 

RESULTS FOR THE CONSTANT RATE PROCESS 

Pr ___ A 

0.002 17.5 

0.002 175 

0.002 175 

..-. -.-.. -.- --.-- 
*R greater than 1 

__- 
Mcrft 

4.60~10~ 

4.19 

3.47 

2.81 

2.38 

2.07 

1.85 

1.67 

1.53 

1.42 

1.33 

~__--- 
Q K P C B R a(Mcri t) -_... _ ---. 

0.50 0.7 1.0 1.0 1.0 42.0* 2.2 

0.65 46.0 2.2 

1.0 55.0 2.2 

1.5 67.4 2.2 

2.0 79.4 2.2 

2.5 90.9 2.2 

3.0 102.0 2.2 

3.5 112.8 2.2 

4.0 123.2 2.2 

4.5 133.2 2.2 
5.0 142.9 2.2 

1.0 0.07 1.0 1 .o 1.0 5.7 2.1 

1.5 7.1 2.1 

2.0 8.6 2.1 

2.5 10.0 2.1 

3.0 11.4 2.1 

3.5 12.8 2.1 

4.0 14.3 2.1 

4.5 15.7 2.1 

5.0 17.1 2.1 

0.50 0.7 1.0 1.0 1.0 4.3 2.1 

0.65 4.7 2.1 

1 .o 5.7 2.1 

1.5 7.1 2.1 

2.0 8.5 2.1 

2.5 9.9 2.1 
3.0 11.3 2.1 

3.5 12.7 2 .l 

4.0 14.1 2.1 

4.5 15.4 2.1 

5.0 16.8 2.2 -, -----._, - _- _-_ _ ..-- --~ 
0 are in error because the linear equation was used for their determination. 
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5.22~10~ 

3.84 

3.01 

2.46 

2.07 

1.79 

1.57 

1.40 

1.26 

7.80~10~ 

6.84 

5.25 

3.87 

3.04 

2.49 

2.10 

1.82 

1.60 

1.43 

1.29 



___- 

Pr 
__ .- 

0.002 

0.01 

0.01 

0.01 

0.01 

0.01 

0.01 

A 

1000 

17.5 

20.0 

35 

70 

105 

175 

175 

I__- _ 
Q --?z-‘-r----Y 

1 .o 

0.50 

0.50 

2.0 

3.0 

4.0 

5.0 

1.0 

2.0 

2.0 

2.0 

3.0 

0.60 

0.65 

0.70 

0.90 

1 .o 

1.1 

1.2 

1.5 

2.0 

2.5 

3.0 

3.5 

4.0 

4.5 

5.0 

0.5 

1.0 

2.0 

3.0 

4.0 

5.0 

___-. 

K 
.- 
0.7 

0.7 

0.7 

0.7 

0.7 

0.7 

0.7 

0.7 

P 

1.0 

0.97 

1.00 

1.0 

1.0 

1 .o 

1.0 

l,.O 

0.97 

_- 

1 

- 

-.-- ..- - 
C 

1 .o 

1.0 

1.0 

1.0 

1 .o 

1.0 

1.0 

1 .o 

.-_- 

B 

1.0 

1.0 

1.0 

1.0 

1.0 

1 .o 

1.0 

1 .o 

R 

1.0 

Mcri t 

4.96~10~ 

a(Mcrit) 

2.2 

8.2 6.50~10~ 2.1 

8.4 6.28~10~ 2.1 

14.0 3.29x102 2.1 

18.1 2.44 2.15 

21.9 1.96 2.2 

25.5 1.66 2.2 

5.6 1.08~10~ 

8.2 6.4~10~ 

4.2 1.61~10~ 

2.8 2.76~10~ 

3.7 1 .90 

0.9 1.10x104 

0.9 1.06 

1.0 1.03 

1.1 9.05x103 

1.1 8.53 

1.2 8.06 

1.2 7.64 

1.4 6.57 

1.7 5.27 

2.0 4.36 

2.3 3.69 

2.5 3.17 

2.8 2.77 

3.1 2.45 

3.4 2.18 

2.1 

2.1 

2.1 

2.1 

2.1 

2.2 

2.2 

2.2 

2.2 

2.2 

2.2 

2.2 

2.2 

2.2 

2.1 

2.1 

2.1 ( 

2.1 1 

2.1 j 

2.1 j 

0.8 

1.1 

1.6 

2.2 

2.7 

3.3 
_-- -- 

1.23~10~ 

8.89x103 

5.51 

3.87 

2.91 

2.30 

2.2 1 

2.2 / 

2.2 / 

2.1 1 

2.1 1 

2.1 
I 

- 

-2- 
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0.01 

0.01 

0.01 

0.02 

0.02 

A 

175 

175 

175 

200 

175 

350 

- 

- .i 
_. Q 

1.0 

1 .o 

1.0 

1.0 

1 .o 

0.5 

1.0 

2.0 

3.0 

4.0 

5.0 

K 
.r: .ET ._ 

0.7 

0.7 

0.5 

0.7 

0.5 

0.5 

P ..- -.- 
0.90 

0.92 

0.94 

0.96 

0.98 

1.02 

1.04 

1.0 

0.975 

1.0 

1.0 

0.965 

C 

1.0 

1.0 

1 .Ol 

1.0 

1.0 

1.01 

1.04 

1.10 

1.30 

1.04 

- - 

B 

1 .o 

0.1 

0.3 

0.7 

1.0 

3.0 

7.0 

10.0 

0.1 

0.3 

1.0 

3.0 

10.0 

1.0 

1 .o 

1.0 

R __--.--. 

1.0 

1.0 

1 .l 

1.1 

1.1 

1.2 

1.2 

Merit a(Mcri t) 

9.79x103 2.2 

9.52 2.2 

9.26 2.2 
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